35 research outputs found

    Magnetorotational instability and dynamo action in gravito-turbulent astrophysical discs

    Get PDF
    Though usually treated in isolation, the magnetorotational and gravitational instabilities (MRI and GI) may coincide at certain radii and evolutionary stages of protoplanetary discs and active galactic nuclei. Their mutual interactions could profoundly influence several important processes, such as accretion variability and outbursts, fragmentation and disc truncation, or large-scale magnetic field production. Direct numerical simulations of both instabilities are computationally challenging and remain relatively unexplored. In this paper, we aim to redress this neglect via a set of 3D vertically stratified shearing-box simulations, combining self-gravity and magnetic fields. We show that gravito-turbulence greatly weakens the zero-net-flux MRI. In the limit of efficient cooling (and thus enhanced GI), the MRI is completely suppressed, and yet strong magnetic fields are sustained by the gravitoturbulence. This turbulent `spiral wave' dynamo may have widespread application, especially in galactic discs. Finally, we present preliminary work showing that a strong net-vertical-flux revives the MRI and supports a magnetically dominated state, in which the GI is secondary.Comment: 23 pages, 16 figures, accepted in MNRA

    Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    Full text link
    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organization of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the numerical discovery in moderate aspect ratio Keplerian shearing boxes of new periodic, incompressible, three-dimensional nonlinear MRI dynamo solutions with a larger dynamical complexity reminiscent of such simulations. These "chimera" cycles are characterized by multiple MRI-unstable dynamical stages, but their basic physical principles of self-sustainment are nevertheless identical to those of simpler cycles found in azimuthally elongated boxes. In particular, we find that they are not sustained at low Pm either due to subcritical turbulent magnetic diffusion. These solutions offer a new perspective into the transition from laminar to turbulent instability-driven dynamos, and may prove useful to devise improved statistical models of turbulent accretion disk dynamos.Comment: 12 pages, 8 figures, submitted to A&

    Dissipative effects on the sustainment of a magnetorotational dynamo in Keplerian shear flow

    Get PDF
    The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum transport in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well understood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agreement with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence in low Pm regimes.Comment: 7 pages, 6 figure

    Gravito-turbulence and the excitation of small-scale parametric instability in astrophysical discs

    Get PDF
    Young protoplanetary discs and the outer radii of active galactic nuclei may be subject to gravitational instability and, as a consequence, fall into a ‘gravitoturbulent’ state. While in this state, appreciable angular momentum can be transported; alternatively, the gas may collapse into bound clumps, the progenitors of planets or stars. In this paper, we numerically characterize the properties of 3D gravitoturbulence, focusing especially on its dependence on numerical parameters (resolution, domain size) and its excitation of small-scale dynamics. Via a survey of vertically stratified shearing-box simulations with PLUTO and RODEO, we find (a) evidence that certain gravitoturbulent properties are independent of horizontal box size only when the box is larger than ≃40H, where H is the scaleheight, (b) at high resolution, small-scale isotropic turbulence appears off the mid-plane around z ≃ 0.5–1H and (c) this small-scale dynamics results from a parametric instability, involving the coupling of inertial waves with a large-scale axisymmetric epicyclic mode. This mode oscillates at a frequency close to Ω and is naturally excited by gravitoturbulence via a non-linear process to be determined. The small-scale turbulence we uncover has potential implications for a wide range of disc physics, e.g. turbulent saturation levels, fragmentation, turbulent mixing and dust settling.This research is partially funded by STFC grant ST/L000636/1. Many of the simulations were run on the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the UK National E-Infrastructure

    Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

    Get PDF
    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, non-linear magnetohydrodynamic process whose study is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows

    Gravitoturbulent dynamos in astrophysical discs

    No full text
    The origin of large-scale and coherent magnetic fields in astrophysical discs is an important and long-standing problem. It is common to appeal to a turbulent dynamo sustained by the magnetorotational instability (MRI) to supply the large-scale field. But research over the last decade, in particular, has demonstrated that various non-ideal magnetohydrodynamic effects can impede or extinguish the MRI, especially in protoplanetary discs. In this paper, we propose a new scenario by which the magnetic field is generated and sustained via the gravitational instability (GI). We use 3D stratified shearing box simulations to characterize the dynamo and find that it operates at low magnetic Reynolds number (from unity to ∼100) for a wide range of cooling times and boundary conditions. The process is kinematic, with a relatively fast growth rate (≲0.1Ω), and has features in common with other well known mean-field dynamos. The magnetic field is generated via the combination of differential rotation and spiral density waves, the latter providing compressible horizontal motions and large-scale vertical rolls. At greater magnetic Reynolds numbers, the build-up of large-scale field is diminished and instead small-scale magnetic structures dominate. We propose that GI may be key to the dynamo engine not only in young protoplanetary discs but also in some active galactic nuclei and galaxies.This work was partially funded by STFC grant ST/L000636/1

    Spontaneous ring formation in wind-emitting accretion discs

    No full text
    International audienceRings and gaps have been observed in a wide range of proto-planetary discs, from young systems like HLTau to older discs like TW Hydra. Recent disc simulations have shown that magnetohydrodynamic (MHD) turbulence (in both the ideal or non-ideal regime) can lead to the formation of rings and be an alternative to the embedded planets scenario. In this paper, we have investigated the way in which these ring form in this context and seek a generic formation process, taking into account the various dissipative regimes and magnetisations probed by the past simulations. We identify the existence of a linear and secular instability, driven by MHD winds, and giving birth to rings of gas that have a width larger than the disc scale height. We show that the linear theory is able to make reliable predictions regarding the growth rates, the contrast and spacing between ring and gap, by comparing these predictions to a series of 2D (axisymmetric) and 3D MHD numerical simulations. In addition, we demonstrate that these rings can act as dust traps provided that the disc is sufficiently magnetised, with plasma beta lower than 104. Given its robustness, the process identified in this paper could have important implications, not only for proto-planetary discs but also for a wide range of accreting systems threaded by large-scale magnetic fields.Key words: accretion, accretion disks / protoplanetary disks / magnetohydrodynamics (MHD) / instabilities / turbulenc
    corecore